Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20.350
Filtrar
1.
Langmuir ; 40(11): 5799-5808, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38501264

RESUMO

Nanopores are powerful single-molecule sensors for analyzing biomolecules such as DNA and proteins. Understanding the dynamics of DNA capture and translocation through nanopores is essential for optimizing their performance. In this study, we examine the effects of applied voltage and pore diameter on current blockage, translocation time, collision, and capture location by translocating λ-DNA through 5.7 and 16 nm solid-state nanopores. Ionic current changes are used to infer DNA conformations during translocation. We find that translocation time increases with pore diameter, which can be attributed to the decrease of the stall force. Linear and exponential decreases of collision frequency with voltage are observed in the 16 and 5.7 nm pores, respectively, indicating a free energy barrier in the small pore. Moreover, the results reveal a voltage-dependent bias in the capture location toward the DNA ends, which is explained by a "pulley effect" deforming the DNA as it approaches the pore. This study provides insights into the physics governing DNA capture and translocation, which can be useful for promoting single-file translocation to enhance nanopore sensing.


Assuntos
Nanoporos , DNA , Nanotecnologia/métodos , Transporte de Íons , Conformação de Ácido Nucleico
2.
Methods Enzymol ; 694: 167-189, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38492950

RESUMO

This chapter presents the integration of magnetic tweezers with single-molecule FRET technology, a significant advancement in the study of nucleic acids and other biological systems. We detail the technical aspects, challenges, and current status of this hybrid technique, which combines the global manipulation and observation capabilities of magnetic tweezers with the local conformational detection of smFRET. This innovative approach enhances our ability to analyze and understand the molecular mechanics of biological systems. The chapter serves as our first formal documentation of this method, offering insights and methodologies developed in our laboratory over the past decade.


Assuntos
DNA , Transferência Ressonante de Energia de Fluorescência , Transferência Ressonante de Energia de Fluorescência/métodos , Pinças Ópticas , Nanotecnologia/métodos , Fenômenos Magnéticos
3.
Nutrients ; 16(5)2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38474764

RESUMO

Nanotechnology in human nutrition represents an innovative advance in increasing the bioavailability and efficiency of bioactive compounds. This work delves into the multifaceted dietary contributions of nanoparticles (NPs) and their utilization for improving nutrient absorption and ensuring food safety. NPs exhibit exceptional solubility, a significant surface-to-volume ratio, and diameters ranging from 1 to 100 nm, rendering them invaluable for applications such as tissue engineering and drug delivery, as well as elevating food quality. The encapsulation of vitamins, minerals, and antioxidants within NPs introduces an innovative approach to counteract nutritional instabilities and low solubility, promoting human health. Nanoencapsulation methods have included the production of nanocomposites, nanofibers, and nanoemulsions to benefit the delivery of bioactive food compounds. Nutrition-based nanotechnology and nanoceuticals are examined for their economic viability and potential to increase nutrient absorption. Although the advancement of nanotechnology in food demonstrates promising results, some limitations and concerns related to safety and regulation need to be widely discussed in future research. Thus, the potential of nanotechnology could open new paths for applications and significant advances in food, benefiting human nutrition.


Assuntos
Suplementos Nutricionais , Nanopartículas , Humanos , Antioxidantes , Vitaminas , Nanotecnologia/métodos
4.
Sci Total Environ ; 926: 171862, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38527538

RESUMO

Through the advancement of nanotechnology, agricultural and food systems are undergoing strategic enhancements, offering innovative solutions to complex problems. This scholarly essay thoroughly examines nanotechnological innovations and their implications within these critical industries. Traditional practices are undergoing radical transformation as nanomaterials emerge as novel agents in roles traditionally filled by fertilizers, pesticides, and biosensors. Micronutrient management and preservation techniques are further enhanced, indicating a shift towards more nutrient-dense and longevity-oriented food production. Nanoparticles (NPs), with their unique physicochemical properties, such as an extraordinary surface-to-volume ratio, find applications in healthcare, diagnostics, agriculture, and other fields. However, concerns about their potential overuse and bioaccumulation raise unanswered questions about their health effects. Molecule-to-molecule interactions and physicochemical dynamics create pathways through which nanoparticles cause toxicity. The combination of nanotechnology and environmental sustainability principles leads to the examination of green nanoparticle synthesis. The discourse extends to how nanomaterials penetrate biological systems, their applications, toxicological effects, and dissemination routes. Additionally, this examination delves into the ecological consequences of nanomaterial contamination in natural ecosystems. Employing robust risk assessment methodologies, including the risk allocation framework, is recommended to address potential dangers associated with nanotechnology integration. Establishing standardized, universally accepted guidelines for evaluating nanomaterial toxicity and protocols for nano-waste disposal is urged to ensure responsible stewardship of this transformative technology. In conclusion, the article summarizes global trends, persistent challenges, and emerging regulatory strategies shaping nanotechnology in agriculture and food science. Sustained, in-depth research is crucial to fully benefit from nanotechnology prospects for sustainable agriculture and food systems.


Assuntos
Nanoestruturas , Solo , Conservação dos Recursos Naturais , Ecossistema , Análise de Perigos e Pontos Críticos de Controle , Agricultura/métodos , Nanotecnologia/métodos , Plantas , Fertilizantes/análise
5.
Sci Total Environ ; 926: 171948, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38527545

RESUMO

The exponential growth of the global population has resulted in a significant surge in the demand for food worldwide. Additionally, the impact of climate change has exacerbated crop losses caused by pests and pathogens. The transportation and utilization of traditional agrochemicals in the soil are highly inefficient, resulting in significant environmental losses and causing severe pollution of both the soil and aquatic ecosystems. Nanotechnology is an emerging field with significant potential for market applications. Among metal-based nanomaterials, copper-based nanomaterials have demonstrated remarkable potential in agriculture, which are anticipated to offer a promising alternative approach for enhancing crop yields and managing diseases, among other benefits. This review firstly performed co-occurrence and clustering analyses of previous studies on copper-based nanomaterials used in agriculture. Then a comprehensive review of the applications of copper-based nanomaterials in agricultural production was summarized. These applications primarily involved in nano-fertilizers, nano-regulators, nano-stimulants, and nano-pesticides for enhancing crop yields, improving crop resistance, promoting crop seed germination, and controlling crop diseases. Besides, the paper concluded the potential impact of copper-based nanomaterials on the soil micro-environment, including soil physicochemical properties, enzyme activities, and microbial communities. Additionally, the potential mechanisms were proposed underlying the interactions between copper-based nanomaterials, pathogenic microorganisms, and crops. Furthermore, the review summarized the factors affecting the application of copper-based nanomaterials, and highlighted the advantages and limitations of employing copper-based nanomaterials in agriculture. Finally, insights into the future research directions of nano-agriculture were put forward. The purpose of this review is to encourage more researches and applications of copper-based nanomaterials in agriculture, offering a novel and sustainable strategy for agricultural development.


Assuntos
Cobre , Praguicidas , Cobre/análise , Ecossistema , Agricultura/métodos , Praguicidas/análise , Nanotecnologia/métodos , Fertilizantes/análise , Solo
6.
J Mol Graph Model ; 129: 108751, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38430695

RESUMO

In this paper, the finite element method is utilized to evaluate the behavior of the armchair phosphorene nanotubes under the compressive loading. The energy equations of the molecular and structural mechanics are used to obtain the elemental properties. The critical compressive forces of various armchair phosphorene nanotubes are computed with clamped-clamped and clamped-free boundary conditions. Results show that the stability of armchair phosphorene nanotubes increases with increasing nanotube aspect ratio, particularly under clamped-clamped boundary conditions. Finally, the buckling mode shapes of armchair phosphorene nanotubes under different boundary conditions are compared. Our work offers valuable insights into how these nanotubes respond to mechanical stress, helps determine elemental properties, and investigates the effects of nanotube geometry and different boundary conditions on their stability. This knowledge has broad applications in fields like nanotechnology, materials science, and nanomechanics, advancing the understanding of nanoscale materials and their potential for various practical uses.


Assuntos
Nanotubos , Análise de Elementos Finitos , Nanotubos/química , Nanotecnologia/métodos , Elasticidade
7.
RNA Biol ; 21(1): 1-19, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38555519

RESUMO

The RNA molecule plays a pivotal role in many biological processes by relaying genetic information, regulating gene expression, and serving as molecular machines and catalyzers. This inherent versatility of RNA has fueled significant advancements in the field of RNA nanotechnology, driving the engineering of complex nanoscale architectures toward biomedical applications, including targeted drug delivery and bioimaging. RNA polymers, serving as building blocks, offer programmability and predictability of Watson-Crick base pairing, as well as non-canonical base pairing, for the construction of nanostructures with high precision and stoichiometry. Leveraging the ease of chemical modifications to protect the RNA from degradation, researchers have developed highly functional and biocompatible RNA architectures and integrated them into preclinical studies for the delivery of payloads and imaging agents. This review offers an educational introduction to the use of RNA as a biopolymer in the design of multifunctional nanostructures applied to targeted delivery in vivo, summarizing physical and biological barriers along with strategies to overcome them. Furthermore, we highlight the most recent progress in the development of both small and larger RNA nanostructures, with a particular focus on imaging reagents and targeted cancer therapeutics in pre-clinical models and provide insights into the prospects of this rapidly evolving field.


Assuntos
Nanoestruturas , Neoplasias , Humanos , RNA/genética , DNA/química , Nanoestruturas/química , Nanotecnologia/métodos , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Neoplasias/genética
8.
Methods Mol Biol ; 2789: 3-17, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38506986

RESUMO

Nanotechnology for drug delivery has made significant advancements over the last two decades. Innovations have been made in cancer research and development, including chemotherapies, imaging agents, and vaccine strategies, as well as other therapeutic areas, e.g., the recent commercialization of mRNA lipid nanoparticles as vaccines against the SARS-CoV-2 virus. The field has also seen technological advancements to aid in addressing the complex questions posed by these novel therapies. In this latest edition of protocols and methods for nanoparticle characterization, we highlight both old and new methodologies for defining physicochemical properties, present both in vitro and in vivo methods to test for a variety of immunotoxicities, and describe assays used for pharmacological studies to assess drug release and tissue distribution.


Assuntos
Nanopartículas , Vacinas , Nanomedicina/métodos , Nanotecnologia/métodos , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/química
9.
ACS Nano ; 18(11): 7711-7738, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38427687

RESUMO

Sepsis, a common life-threatening clinical condition, continues to have high morbidity and mortality rates, despite advancements in management. In response, significant research efforts have been directed toward developing effective strategies. Within this scope, nanotechnology has emerged as a particularly promising field, attracting significant interest for its potential to enhance disease diagnosis and treatment. While several reviews have highlighted the use of nanoparticles in sepsis, comprehensive studies that summarize and analyze the hotspots and research trends are lacking. To identify and further promote the development of nanotechnology in sepsis, a bibliometric analysis was conducted on the relevant literature, assessing research trends and hotspots in the application of nanomaterials for sepsis. Next, a comprehensive review of the subjectively recognized research hotspots in sepsis, including nanotechnology-enhanced biosensors and nanoscale imaging for sepsis diagnostics, and nanoplatforms designed for antimicrobial, immunomodulatory, and detoxification strategies in sepsis therapy, is elucidated, while the potential side effects and toxicity risks of these nanomaterials were discussed. Particular attention is given to biomimetic nanoparticles, which mimic the biological functions of source cells like erythrocytes, immune cells, and platelets to evade immune responses and effectively deliver therapeutic agents, demonstrating substantial translational potential. Finally, current challenges and future perspectives of nanotechnology applications in sepsis with a view to maximizing their great potential in the research of translational medicine are also discussed.


Assuntos
Nanopartículas , Nanoestruturas , Sepse , Humanos , Nanotecnologia/métodos , Nanoestruturas/uso terapêutico , Nanopartículas/uso terapêutico , Diagnóstico por Imagem , Sepse/diagnóstico , Sepse/terapia
10.
Nanoscale ; 16(12): 6190-6198, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38445876

RESUMO

Here we introduce scattering-type scanning near-field optical microscopy (s-SNOM) as a novel tool for nanoscale chemical-imaging of sub-cellular organelles, nanomaterials and of the interactions between them. Our setup uses a tuneable mid-infrared laser and a sharp scanning probe to image at a resolution substantially surpassing the diffraction limit. The laser can be tuned to excite vibrational modes of functional groups in biomolecules, (e.g. amide moieties), in a way that enables direct chemical mapping without the need for labelling. We, for the first time, chemically image neuronal ultrastructure, identify neuronal organelles and sub-organelle structures as small as 10 nm and validate our findings using transmission electron microscopy (TEM). We produce chemical and morphological maps of neurons treated with gold nanospheres and characterize nanoparticle size and intracellular location, and their interaction with the plasma membrane. Our results show that the label-free nature of s-SNOM means it has a 'true' chemical resolution of up to 20 nm which can be further improved. We argue that it offers significant potential in nanomedicine for nanoscale chemical imaging of cell ultrastructure and the subcellular distribution of nanomaterials within tissues.


Assuntos
Nanopartículas , Nanoestruturas , Nanotecnologia/métodos , Microscopia/métodos , Nanoestruturas/química , Luz
11.
Sci Rep ; 14(1): 6530, 2024 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-38503765

RESUMO

Nanoparticulate systems have the prospect of accounting for a new making of drug delivery systems. Nanotechnology is manifested to traverse the hurdle of both physical and biological sciences by implementing nanostructures indistinct fields of science, particularly in nano-based drug delivery. The low delivery efficiency of nanoparticles is a critical obstacle in the field of tumor diagnosis. Several nano-based drug delivery studies are focused on for tumor diagnosis. But, the nano-based drug delivery efficiency was not increased for tumor diagnosis. This work proposes a method called point biserial correlation symbiotic organism search nanoengineering-based drug delivery (PBC-SOSN). The objective and aim of the PBC-SOSN method is to achieve higher drug delivery efficiency and lesser drug delivery time for tumor diagnosis. The contribution of the PBC-SOSN is to optimized nanonengineering-based drug delivery with higher r drug delivery detection rate and smaller drug delivery error detection rate. Initially, raw data acquired from the nano-tumor dataset, and nano-drugs for glioblastoma dataset, overhead improved preprocessed samples are evolved using nano variational model decomposition-based preprocessing. After that, the preprocessed samples as input are subjected to variance analysis and point biserial correlation-based feature selection model. Finally, the preprocessed samples and features selected are subjected to symbiotic organism search nanoengineering (SOSN) to corroborate the objective. Based on these findings, point biserial correlation-based feature selection and a symbiotic organism search nanoengineering were tested for their modeling performance with a nano-tumor dataset and nano-drugs for glioblastoma dataset, finding the latter the better algorithm. Incorporated into the method is the potential to adjust the drug delivery detection rate and drug delivery error detection rate of the learned method based on selected features determined by nano variational model decomposition for efficient drug delivery.


Assuntos
Glioblastoma , Nanopartículas , Nanoestruturas , Humanos , Sistemas de Liberação de Medicamentos , Nanotecnologia/métodos , Preparações Farmacêuticas , Nanopartículas/química
12.
Sci Adv ; 10(12): eadk1250, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38507482

RESUMO

RNA nanotechnology aims to use RNA as a programmable material to create self-assembling nanodevices for application in medicine and synthetic biology. The main challenge is to develop advanced RNA robotic devices that both sense, compute, and actuate to obtain enhanced control over molecular processes. Here, we use the RNA origami method to prototype an RNA robotic device, named the "Traptamer," that mechanically traps the fluorescent aptamer, iSpinach. The Traptamer is shown to sense two RNA key strands, acts as a Boolean AND gate, and reversibly controls the fluorescence of the iSpinach aptamer. Cryo-electron microscopy of the closed Traptamer structure at 5.45-angstrom resolution reveals the mechanical mode of distortion of the iSpinach motif. Our study suggests a general approach to distorting RNA motifs and a path forward to build sophisticated RNA machines that through sensing, computing, and actuation modules can be used to precisely control RNA functionalities in cellular systems.


Assuntos
Nanoestruturas , Robótica , RNA/genética , Microscopia Crioeletrônica , Oligonucleotídeos/química , Nanotecnologia/métodos , Corantes , Nanoestruturas/química , Conformação de Ácido Nucleico
13.
Nanotoxicology ; 18(1): 1-35, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38436298

RESUMO

Metal-based nanomaterials (MNMs) have gained particular interest in nanotechnology industry. They are used in various industrial processes, in biomedical applications or to improve functional properties of several consumer products. The widescale use of MNMs in the global consumer market has resulted in increases in the likelihood of exposure and risks to human beings. Human exposure to MNMs and assessment of their potential health effects through the concomitant application of biomarkers of exposure and effect of the most commonly used MNMs were reviewed in this paper. In particular, interactions of MNMs with biological systems and the nanobiomonitoring as a prevention tool to detect the early damage caused by MNMs as well as related topics like the influence of some physicochemical features of MNMs and availability of analytical approaches for MNMs testing in human samples were summarized in this review. The studies collected and discussed seek to increase the current knowledge on the internal dose exposure and health effects of MNMs, highlighting the advantages in using biomarkers in primary prevention and health surveillance.


Assuntos
Monitoramento Biológico , Nanoestruturas , Humanos , Nanotecnologia/métodos , Metais/toxicidade , Nanoestruturas/toxicidade , Nanoestruturas/química , Biomarcadores , Prevenção Primária
14.
Biomed Pharmacother ; 173: 116426, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38471274

RESUMO

In the field of cancer therapy, sesquiterpene lactones (SLs) derived from diverse Dicoma species demonstrate noteworthy bioactivity. However, the translation of their full therapeutic potential into clinical applications encounters significant challenges, primarily related to solubility, bioavailability, and precise drug targeting. Despite these obstacles, our comprehensive review introduces an innovative paradigm shift that integrates the inherent therapeutic properties of SLs with the principles of green nanotechnology. To overcome issues of solubility, bioavailability, and targeted drug delivery, eco-friendly strategies are proposed for synthesizing nanocarriers. Green nanotechnology has emerged as a focal point in addressing environmental and health concerns linked to conventional treatments. This progressive approach of green nanotechnology holds promise for the development of safe and sustainable nanomaterials, particularly in the field of drug delivery. This groundbreaking methodology signifies a pioneering advancement in the creation of novel and effective anticancer therapeutics. It holds substantial potential for transforming cancer treatment and advancing the landscape of natural product research.


Assuntos
Nanoestruturas , Neoplasias , Sesquiterpenos , Humanos , Neoplasias/tratamento farmacológico , Nanotecnologia/métodos , Sesquiterpenos/farmacologia , Sesquiterpenos/uso terapêutico , Lactonas/uso terapêutico
15.
Methods Enzymol ; 694: 191-207, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38492951

RESUMO

Magnetic tweezers (MTs) have become indispensable tools for gaining mechanistic insights into the behavior of DNA-processing enzymes and acquiring detailed, high-resolution data on the mechanical properties of DNA. Currently, MTs have two distinct designs: vertical and horizontal (or transverse) configurations. While the vertical design and its applications have been extensively documented, there is a noticeable gap in comprehensive information pertaining to the design details, experimental procedures, and types of studies conducted with horizontal MTs. This article aims to address this gap by providing a concise overview of the fundamental principles underlying transverse MTs. It will explore the multifaceted applications of this technique as an exceptional instrument for scrutinizing DNA and its interactions with DNA-binding proteins at the single-molecule level.


Assuntos
DNA , Pinças Ópticas , DNA/química , Fenômenos Magnéticos , Micromanipulação/métodos , Nanotecnologia/métodos
16.
Talanta ; 273: 125937, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38503124

RESUMO

The excessive residue of neonicotinoid pesticides in the environment and food poses a severe threat to human health, necessitating the urgent development of a sensitive and efficient method for detecting trace amounts of these pesticides. Electrochemical sensors, characterized by their simplicity of operation, rapid response, low cost, strong selectivity, and high feasibility, have garnered significant attention for their immense potential in swiftly detecting trace target molecules. The detection capability of electrochemical sensors primarily relies on the catalytic activity of electrode materials towards the target analyte, efficient loading of biomolecular functionalities, and the effective conversion of interactions between the target analyte and its receptor into electrical signals. Electrode materials with superior performance play a crucial role in enhancing the detection capability of electrochemical sensors. With the continuous advancement of nanotechnology, particularly the widespread application of novel functional materials, there is paramount significance in broadening the applicability and expanding the detection range of pesticide sensors. This comprehensive review encapsulates the electrochemical detection mechanisms of neonicotinoid pesticides, providing detailed insights into the outstanding roles, advantages, and limitations of functional materials such as carbon-based materials, metal-organic framework materials, supramolecular materials, metal-based nanomaterials, as well as molecular imprinted materials, antibodies/antigens, and aptamers as molecular recognition elements in the construction of electrochemical sensors for neonicotinoid pesticides. Furthermore, prospects and challenges facing various electrochemical sensors based on functional materials for neonicotinoid pesticides are discussed, providing valuable insights for the future development and application of biosensors for simplified on-site detection of agricultural residues.


Assuntos
Técnicas Biossensoriais , Nanoestruturas , Praguicidas , Humanos , Praguicidas/análise , Nanoestruturas/química , Nanotecnologia/métodos , Carbono , Técnicas Biossensoriais/métodos
17.
Food Chem ; 447: 138995, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38513496

RESUMO

Baijiu quality and safety have received considerable attention owing to the gradual increase in its consumption. However, owing to the unique and complex process of Baijiu production, issues leading to quality and safety concerns may occur during the manufacturing process. Therefore, establishing appropriate analytical methods is necessary for Baijiu quality assurance and process control. Nanomaterial (NM)-based optical sensing techniques have garnered widespread interest because of their unique advantages. However, comprehensive studies on nano-optical sensing technology for quality and safety control of Baijiu are lacking. In this review, we systematically summarize NM-based optical sensor applications for the accurate detection and quantification of analytes closely related to Baijiu quality and safety. Furthermore, we evaluate the sensing mechanisms for each application. Finally, we discuss the challenges nanotechnology poses for Baijiu analysis and future trends. Overall, nanotechnological approaches provide a potentially useful alternative for simplifying Baijiu analysis and improving final product quality and safety.


Assuntos
Nanoestruturas , Nanotecnologia , Nanotecnologia/métodos
18.
Anal Chem ; 96(14): 5702-5710, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38538555

RESUMO

Glass nanopipets have been demonstrated to be a powerful tool for the sensing and discrimination of biomolecules, such as DNA strands with different lengths or configurations. Despite progress made in nanopipet-based sensors, it remains challenging to develop effective strategies that separate and sense in one operation. In this study, we demonstrate an agarose gel-filled nanopipet that enables hyphenated length-dependent separation and electrochemical sensing of short DNA fragments based on the electrokinetic flow of DNA molecules in the nanoconfined channel at the tip of the nanopipet. This nanoconfined electrokinetic chromatography (NEC) method is used to distinguish the mixture of DNA strands without labels, and the ionic current signals measured in real time show that the mixed DNA strands pass through the tip hole in order according to the molecular weight. With NEC, gradient separation and electrochemical measurement of biomolecules can be achieved simultaneously at the single-molecule level, which is further applied for programmable gene delivery into single living cells. Overall, NEC provides a multipurpose platform integrating separation, sensing, single-cell delivery, and manipulation, which may bring new insights into advanced bioapplication.


Assuntos
DNA , Nanotecnologia , DNA/química , Nanotecnologia/métodos , Cromatografia
19.
Anal Chem ; 96(9): 3687-3697, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38353660

RESUMO

DNA nanotechnology is rapidly gaining traction in numerous applications, each bearing varying degrees of tolerance to the quality and quantity necessary for viable nanostructure function. Despite the distinct objectives of each application, they are united in their reliance on essential analytical techniques, such as purification and characterization. This tutorial aims to guide the reader through the current state of DNA nanotechnology analytical chemistry, outlining important factors to consider when designing, assembling, purifying, and characterizing a DNA nanostructure for downstream applications.


Assuntos
Nanoestruturas , Nanotecnologia , Nanotecnologia/métodos , Nanoestruturas/química , DNA/química
20.
Anal Methods ; 16(10): 1454-1467, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38415741

RESUMO

Saccharides are not only the basic constituents and nutrients of living organisms, but also participate in various life activities, and play important roles in cell recognition, immune regulation, development, cancer, etc. The analysis of carbohydrates and glycoconjugates is a necessary means to study their transformations and physiological roles in living organisms. Existing detection techniques can hardly meet the requirements for the analysis of carbohydrates and glycoconjugates in complex matrices as they are expensive, involve complex derivatization, and are time-consuming. Nanopore sensing technology, which is amplification-free and label-free, and is a high-throughput process, provides a new solution for the identification and sequencing of carbohydrates and glycoconjugates. This review highlights recent advances in novel nanopore-based single-molecule sensing technologies for the detection of carbohydrates and glycoconjugates and discusses the advantages and challenges of nanopore sensing technologies. Finally, current issues and future perspectives are discussed with the aim of improving the performance of nanopores in complex media diagnostic applications, as well as providing a new direction for the quantification of glycan chains and the study of glycan chain properties and functions.


Assuntos
Nanoporos , Glicoconjugados , Carboidratos , Nanotecnologia/métodos , Polissacarídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...